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Introduction

Plants have evolved to possess a two-layered innate

immune system against diverse pathogens; this is a striking

difference compared to higher animals that utilize mobile

defender cells and a somatic adaptive immune system

(Dangl et al. 2013; Dodds and Rathjen 2010; Jones and

Dangl 2006). A plant’s primary layer of defense is com-

posed of pattern recognition receptors (PRRs). Once these

proteins sense conserved pathogen (or microbial) associ-

ated molecular patterns (PAMPs or MAMPs), they initiate

PAMP-triggered immunity (PTI). Pathogens, however,

have evolved to suppress PTI by secreting effectors, i.e.

inhibitory molecules (Chisholm et al. 2006). The sophis-

ticated innate immune system of plants has coevolved with

pathogens. The secondary layer of plant innate immunity

(referred to as effector-triggered immunity, or ETI)

employs plant resistance proteins (R-proteins) that recog-

nize certain pathogen-derived effectors. This recognition

promotes programmed cell death during the so-called

hypersensitive response (HR) that occurs locally at

infection sites. ETI is only activated when R-proteins

successfully recognize a particular pathogenic species or

when they are able to isolate specific pathogen effectors

[the so-called avirulence (AVR) proteins]. Therefore, a

detailed molecular analysis of the interaction between R

and AVR proteins is essential for the development of

foods, fibers, and biofuels, as well as for understanding

plant immunity.

Rice blast caused by infection with the rice blast fungus,

Magnaporthe oryzae (Couch), is the most devastating

disease of rice worldwide (Dean et al. 2012). Mutations in

its AVR genes allow M. oryzae to avoid the rice ETI sys-

tem, since specific R-AVR interactions are perturbed (Sone

et al. 2013). Bioinformatic analyses of the genomes of

several rice strains have revealed approximately 500 genes

encoding nucleotide binding and leucine-rich repeat (NB-

LRR) proteins; this is the largest class of R proteins, and

each family member contains NB and LRR domains

(Monosi et al. 2004; Zhou et al. 2004). To date, around 100

rice R genes have been characterized, and 24 of these are

involved in resistance to rice blast fungus (Pib, Pita, Pi54,

Pi-9, Pid2, Pi2, Piz-t, Pi-36, Pi-37, Pikm, Pi5, Pid3, Pi21,

Pit, Pb1, Pish, Pi-k, Pik-p, Pia, NLS1, Pi25, Pi54rh,

Pi54of, and Pid3-A4) (Sharma et al. 2012). Among this

24-gene subset, 21 encode NBS-LRR family members,

including rudimentary NBS-LRR such as Pi54, Pi54rh, and

Pi54of (Das et al. 2012; Devanna et al. 2014). Pi-d2

encodes a receptor-like kinase protein (Chen et al. 2006),

and Pi21 encodes a proline-rich protein (Fukuoka et al.

2009).

On the other hand, ten AVR genes have been cloned.

These include PWL1 (Kang et al. 1995), PWL2 (Sweigard

et al. 1995), AVR-CO39 (Farman and Leong 1998), AVR-

Pita (Orbach et al. 2000), ACE1 (Fudal et al. 2005), AVR-

Pii (Zhou et al. 2006), AvrPiz-t (Li et al. 2009), AVR-Pia
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(Miki et al. 2009), AVR-Pik/km/kp (Yoshida et al. 2009),

and AVR-Pi54 (Devanna et al. 2014). Direct interactions

between R and AVR products, such as Pi-ta/AVR-Pita (Jia

et al. 2000), Pik-1/AVR-Pik (Kanzaki et al. 2012), RGA5/

AVR-CO39, and RGA5/AVR-Pia (Cesari et al. 2013) have

already been described. Investigation of the NB-LRR

paired protein RGA4/RGA5 system revealed that these

proteins interact through their coiled-coil (CC) domains

and form homo- and hetero-complexes (Cesari et al. 2014).

Binding of AVR-CO39 or AVR-Pia to RGA5 causes seg-

regation of RGA4–RGA5 hetero-complexes and promotes

the formation of RGA4 homo-complexes, which ultimately

leads to HR-induced death (Cesari et al. 2014). This is

consistent with the role of RGA4 as an activator of both

cell death and the HR (Cesari et al. 2014). To obtain further

insight into R-AVR interactions at the molecular level, we

constructed a recombinant AVR-Pia (rAVR-Pia) produc-

tion system. We previously reported that rAVR-Pia

expressed in Escherichia coli is trafficked to inclusion

bodies, where it is denatured (Satoh et al. 2014). However,

purification and refolding restores rAVR-Pia functionality,

since the protein can trigger cell browning in leaves of the

rice cultivar, Aichiasahi. Furthermore, an anti-AVR-Pia

antibody raised against refolded rAVR-Pia can also detect

native AVR-Pia secreted from M. oryzae Ina168 (Satoh

et al. 2014). This confirms the quality of refolded AVR-Pia.

Recently, analysis of the solution structure of AvrPiz-t

revealed that it adopts a six-stranded b-sandwich fold with

a pair of disulfide bonds (Zhang et al. 2013).

Here, we report the solution NMR structure of AVR-Pia.

Surprisingly, the structure of AVR-Pia shows similarity to

AvrPiz-t (Zhang et al. 2013) in topology regardless of the

lack of amino acid sequence similarity between these two

proteins. Concomitant with the presence of other structurally

similar plant pathogens such as ToxB (Nyarko et al. 2014),

our result indicates that there is a common mechanism in

plants for recognizing effectors and leading to cell death.

Methods

Protein expression, purification, and NMR sample

preparation

Uniformly 15N/13C enriched protein was refolded and

purified under the same conditions as described previously

for wild-type rAVR-Pia (Satoh et al. 2014). Briefly, the

E. coli Rosetta (DE3) strain (Novagen) was transformed

with pET-26b harboring rAVR-Pia cDNA and cultured in

CHL medium-13C, 15N (Shoko Co., Ltd). For NMR spec-

troscopy, about 1 mM protein was prepared in 90 % H2O/

10 % D2O containing 10 mM sodium phosphate buffer (pH

6.5) and 20 mM NaCl.

NMR data collection and assignments

All NMR spectra were recorded at 293–308 K either on a

Bruker DMX 500 MHz equipped with a cryo-probe or a

JEOL ECA 600 MHz spectrometer. Data were processed

using NMRPipe 4.1 and NMRDraw 2.3 (Delaglio et al.

1995) and analyzed using Sparky 3.113 software (T.

D. Goddard and D. G. Kneller, SPARKY 3, University of

California, San Francisco, CA, USA). The assignment of

the 1H-, 13C-, and 15N resonances was carried out using the

following set of spectra: [1H–1H] TOCSY, [1H–1H]

NOESY, [1H–15N] heteronuclear single quantum coher-

ence (HSQC), [1H–13C] HSQC, HNCO, HN(CO)CA,

HNCA, CBCA(CO)NH, C(CO)NH, HBHA(CO)NH, and

HC(C)H-TOCSY. All chemical shift values were refer-

enced to 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS)

and determined using these frequency ratios:

(15N/1H) = 0.101329118, (13C/1H) = 0.251449519

(Wishart et al. 1995). The inter-proton distance restraints

for the structural calculations were obtained from [1H,1H]-

NOESY, 15N-edited NOESY-HSQC, and 13C-edited

NOESY-HSQC spectra using a 150 ms mixing time.

NMR structure calculation

Distance restraints were derived from the inter-proton

nuclear Overhauser effect (NOE). The restraints for the

backbone phi and psi torsion angles were derived from the

chemical shifts of the backbone atoms using the TALOS

program (Shen et al. 2009). The structure was calculated

using the CYANA 2.1 software package (Güntert 2004). A

total of 784 distances and 104 angle restraints was used for

the structure calculation. A total of 200 structures was

calculated and a final ensemble of 20 structures was

selected based on CYANA target function values. The

quality of the final ensemble of structures was assessed

with PROCHECK-NMR (Laskowski et al. 1996). The

structures were visualized using PyMOL 1.7.4 (http://

www.pymol.org/). Structure coordinates and NMR reso-

nance assignments for AVR-Pia have been deposited in the

BioMagResBank (BMRB) (entry 25636) and Protein Data

Bank (PDB) (ID 2N37), respectively.

Relaxation measurements

The backbone 15N relaxation parameters, including the

longitudinal relaxation rate (R1), transverse relaxation rates

(R2), and steady-state heteronuclear {1H}–15N NOE values

of AVR-Pia were measured using standard pulse sequences

on a Bruker Avance 600 MHz NMR spectrometer at

308 K. Recycle delays were set to 3 s for R1 and R2

experiments. The {1H}–15N NOE experiments were per-

formed in the presence and absence of a 3-s proton
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saturation period prior to the 15N excitation pulse and using

recycle delays of 2 and 5 s, respectively (Markley et al.

1971; Renner et al. 2002). The delays for the R1 were 2,

20, 60, 100, 300, 600, 1000, and 2000 ms. The delays for

the R2 were 2, 20, 60, 90, 120, 150, 200, and 300 ms. The

relaxation rate constants were obtained by fitting the peak

intensities to a single exponential function using the non-

linear least squares method. The rotational correlation time

was estimated using the R2/R1 ratio by the r2r1_tm (http://

www.palmer.hs.columbia.edu/software/quadric.html).

Results

Solution structure and dynamics of AVR-Pia

The 1H–15N HSQC spectrum of AVR-Pia acquired at pH

6.5 and 308 K was well dispersed, consistent with an

ordered structure (Fig. 1). The assignment of the 1H, 15N,

and 13C resonances of AVR-Pia were essentially complete.

Size exclusion chromatography indicated that it was a

monomer under the conditions used in NMR experiments

(data not shown). In addition, the rotational correlation

time estimated from R2/R1 was 5.1 ± 0.4 ns. This value is

comparable with the predicted value of a monomeric pro-

tein of similar size (Farrow et al. 1994). The solution

structures of AVR-Pia were determined with NOE-derived

distances and backbone dihedral angles (Table 1). Figure 2

shows the superposition of the final 20 energy-minimized

AVR-Pia structures. The root-mean-square deviation

(RMSD) from the mean structure in the structured region

(residues 5–66) is 0.29 Å for the backbone atoms and

0.90 Å for all heavy atoms. The Ramachandran plot indi-

cated that 76.3 % of residues are in the most favored

regions, 23.7 % in the additionally allowed regions, and

Fig. 1 The assigned 1H–15N

HSQC spectrum of AVR-Pia

acquired at 308 K. The assigned

side chain resonances of Arg

(He/Ne, aliased), Trp (He1/

Ne1), Asn (Hd2 s/Nd2), and

Gln (He2 s/Ne2) are indicated

in brackets

Table 1 Structural statistics of AVR-Pia

Distance restraints

Intra-residue (i = j) 228

Sequential (|i - j| = 1) 243

Medium (1\ |i - j|\ 5) 75

Long range (|i - j| C 5) 238

Total 784

Dihedral angle restraints

Phi 52

Psi 52

Total 104

RMSD from mean (residues 5–66) (Å)

Backbone 0.28 ± 0.08

Heavy atom 0.90 ± 0.10

Ramachandran plot (%)

Residues in most favorable regions 76.3

Residues in additional allowed regions 23.7

Residues in generously allowed regions 0

Residues in disallowed regions 0

Structural statistics were computed by PROCHECK-NMR
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none in the generously allowed regions and the disallowed

regions.

AVR-Pia adopts a b-sandwich fold consisting of six

anti-parallel b-strands corresponding to b1 (residues 6–10),

b2 (residues 17–24), b3 (residues 28–33), b4 (residues

36–43), b5 (residues 47–50), and b6 (residues 61–65)

stabilized by one disulfide bond between Cys 6 and Cys 47

(Fig. 2c). Strands b1, b2, and b6 form one-half of the

Fig. 2 Solution structure of

AVR-Pia. a Stereoview of the

ensemble of the 20 lowest

energy structures of AVR-Pia.

b Stereoview of the backbone

atoms of AVR-Pia. c Ribbon

diagram of the tertiary structure

of AVR-Pia. The yellow stick

indicates the disulfide bond

between Cys 6 and Cys 47
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sandwich, and b3, b4, and b5 form the other. A disulfide

bond between Cys 6 in b1 and Cys 47 in b5 bridges each

half. The overall region is rigid with an average R1 value

of 2.22 s-1, R2 of 8.27 s-1, and an average {1H}–15N

heteronuclear NOE of 0.78 (Fig. 3).

Discussion and conclusion

We used PDBeFold (Krissinel and Henrick 2004) to search

for structures similar to AVR-Pia. This revealed that AVR-

Pia has a similar fold to that of Pyrenophora tritici-repentis

ToxB (PDBID: 2MM2) and M. oryzae AvrPiz-t (PDBID:

2lW6) as shown in Fig. 4. The RMSD values are 2.57 Å

using 55 Ca atoms in ToxB and 2.76 Å using 51 Ca atoms

in AvrPiz-t. There was no significant primary amino acid

sequence similarity between these two proteins. However,

they share a common six-stranded b-sandwich fold that is

stabilized by a disulfide bond, in which b strands b1, b2,

and b6 form an anti-parallel b-sheet, b3, b4, and b5 form

the other anti-parallel b-sheet, and the two anti-parallel b-

sheets sandwich a hydrophobic structural core (Zhang et al.

2013; Nyarko et al. 2014). These proteins share a common

Fig. 3 Backbone relaxation parameters (R1, R2, and {1H}–15N

heteronuclear NOE) of AVR-Pia. Error bars for R1 and R2 show

fitting error. Errors for the NOE ratio were estimated from the root

mean square variation of noise

Fig. 4 Structural comparison of AVR-Pia with AvrPiz-t and ToxB. a Sequence alignment of AVR-Pia, AvrPiz-t, and ToxB. b Ribbon diagrams

of AVR-Pia, AvrPiz-t (PDB ID 2LW6), and ToxB (PDB ID 2MM2). c Topology diagram of the structure
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fold topology; however, the pattern of disulfide bonds is

divergent. AVR-Pia has one disulfide bond between Cys 6

in b1 and Cys 47 in b5. In contrast, AvrPiz-t and ToxB

have 4 cysteine residues forming two disulfide bonds: Cys

44 (b4)–Cys 57 (b5) and Cys 5 (b1)–Cys 52 (loop 4

between b4 and b5) in AvrPiz-t and Cys 2 (b1)–Cys 43

(b5) and Cys 18 (b2)–Cys 64 (C-terminus) in ToxB. All of

these proteins have one cysteine in each of b1 and b5, and

these cysteine residues form a disulfide bond in AVR-Pia

and ToxB, but not in AvrPiz-t. This finding suggests that a

disulfide bond between cysteines in b1 and b5 may not be

required for the maintenance of structure and function of

these proteins.

These proteins are important factors in the interaction

between the producer fungi and their host plants. ToxB is

described as a host-selective toxin, as it causes cell death in

wheat genotypes with dominant toxin sensitivity genes and

supports the virulence of necrotrophic P. tritici-repentis.

Magnaporthe oryzae is a hemibiotrophic plant pathogen,

which requires effectors for the suppression of the PTI

system in the host and for successful infection. Effector

activity for AVR-Pia has not been identified yet, but

AVRPiz-t shows suppression of ROS generation upon

chitin or flg22 treatment in transgenic rice, and its target

protein has been identified (Park et al. 2012). AVR-Pia and

AvrPiz-t are also known as avirulence effectors that trigger

cell death in rice cultivars with their cognate dominant R

genes and support the resistance of rice toward the patho-

gen. A mechanism of cell death induction by AVR-Pia/

RGA5 direct interaction has been proposed (Cesari et al.

2014).

The structural similarity between ToxB and AvrPiz-t has

already been reported (Nyarko et al. 2014). Together with

the characterization of the AVR-Pia structure described

here, these findings strongly suggest that these proteins

utilize a common mechanism for interacting with host plant

target proteins and causing cell death. Further structural

studies of additional AVR protein family members will

provide a greater understanding of their interaction with

host proteins. Ultimately, this may inspire chemical bio-

logical strategies that can be applied to prevent crop loss

due to infection.
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